Indian J Pharm Close
 

Figure 1: Capsaicin-induced cardiorespiratory responses before and after vagotomy. The original tracings of an experiment showing the capsaicin (10 μg/kg)-induced changes in blood pressure (BP); respiration (Resp); and heart rate (ECG), before and after vagotomy are presented in the left panel. Vertical dashed line indicates the point of injection of capsaicin (10 μg/kg). Horizontal line (time scale) = 5 s. Recording of BP at 10 times slower speed is shown in inset A and B for before and after vagotomy, respectively. In inset A, the triphasic BP response (immediate hypotension, intermediate recovery, and delayed hypotension) after capsaicin is shown and in inset B, the potentiation of intermediate hypertensive response is indicated by an arrow. The mean ± SEM values (n = 12) of MAP, RF, and HR as % of initial at immediate (Immed), intermediate (Inter), and delayed phases are presented in the bar diagrams. * (P < 0.05, Student's t-test for paired observations)

Figure 1:</b> Capsaicin-induced cardiorespiratory responses before and after vagotomy. The original tracings of an experiment showing the capsaicin (10 μg/kg)-induced changes in blood pressure (BP); respiration (Resp); and heart rate (ECG), before and after vagotomy are presented in the left panel. Vertical dashed line indicates the point of injection of capsaicin (10 μg/kg). Horizontal line (time scale) = 5 s. Recording of BP at 10 times slower speed is shown in inset A and B for before and after vagotomy, respectively. In inset A, the triphasic BP response (immediate hypotension, intermediate recovery, and delayed hypotension) after capsaicin is shown and in inset B, the potentiation of intermediate hypertensive response is indicated by an arrow. The mean ± SEM values (<i>n</i> = 12) of MAP, RF, and HR as % of initial at immediate (Immed), intermediate (Inter), and delayed phases are presented in the bar diagrams. * (<i>P</i> < 0.05, Student's <i>t-</i>test for paired observations)