lexi
IPSIndian Journal of Pharmacology
Home  IPS  Feedback Subscribe Top cited articles Login 
Users Online : 2621 
Small font sizeDefault font sizeIncrease font size
Navigate Here
  Search
 
  
Resource Links
 »  Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »Related articles
 »  Article in PDF (3,115 KB)
 »  Citation Manager
 »  Access Statistics
 »  Reader Comments
 »  Email Alert *
 »  Add to My List *
* Registration required (free)

 
In This Article
 »  Abstract
 » Introduction
 »  Materials and Me...
 » Results
 » Discussion
 » Conclusion
 »  References
 »  Article Figures

 Article Access Statistics
    Viewed176    
    Printed2    
    Emailed0    
    PDF Downloaded13    
    Comments [Add]    

Recommend this journal

 


 
 Table of Contents    
EXPERIMENTAL RESEARCH ARTICLE
Year : 2022  |  Volume : 54  |  Issue : 2  |  Page : 102-109
 

Evaluation of anti-amnesic effect of Conyza bonariensis in rats


1 Department of Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
2 Department of Veterinary Biochemistry, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
3 Department of Veterinary Pathology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
4 Public Health, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
5 Department of Agronomy, Assam Agricultural University, Jorhat, Assam, India
6 Department of Chemistry, Drug Discovery Lab, Annamalai University, Chidambaram, Tamil Nadu, India

Date of Submission27-May-2019
Date of Decision13-Apr-2021
Date of Acceptance29-Mar-2022
Date of Web Publication10-May-2022

Correspondence Address:
Dr. Beenita Saikia
Department of Pharmacology, College of Veterinary Science, Khanapara, Guwahati - 781 022, Assam
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijp.ijp_201_19

Rights and Permissions

 » Abstract 


OBJECTIVE: Conyza bonariensis is an ornamental medicinal weed. This experiment was planned to explore the outcome of petroleum ether extract of C. bonariensis (PECB) leaves on scopolamine-induced amnesia in rats.
MATERIALS AND METHODS: For impairing memory, 0.4 mg/kg (i. p.) of scopolamine was given. Fifty to 200 mg/kg of PECB was fed orally to rats and 3 mg/kg (i. p.) of tacrine was given as a standard drug. Anti-amnesic property was evaluated in Barnes maze using ANY-maze software. Following a behavioral study, acetylcholinesterase (AChE), β-amyloid1-41, antioxidant enzymes, and cytokine levels were measured. Furthermore, reverse transcription–polymerase chain reaction was done for expression of the marker genes such as AChE, Nrf2, NF-κB, PP2A, and HO-1, whereas BDNF, TrkB, caspase-3, and Bax were measured by Western blotting.
RESULTS: PECB and tacrine significantly improved memory dysfunction by decreasing escape latency in Barnes maze. At the highest dose, treatment with PECB altered the scopolamine-induced hyperactivation of AChE and β-amyloid1-41 activity. PECB elevated the levels of superoxide dismutase, glutathione, and catalase and decreased lipid peroxidation and nitric oxide dose dependently. PECB attenuated scopolamine-induced increase of tumor necrosis factor-α and interleukin (IL)-1β concentrations in the hippocampus with reversed diminished IL-10 level toward normal in the brain. Nrf2, HO-1, PP2A, BDNF, and TrkB were significantly upregulated with downregulation of AChE, NF-κB, Tau, Bax, and caspase-3. Different components such as beta-amyrin and alpha-amyrin were isolated from leaves of the plant.
CONCLUSION: The results indicated that PECB might be a potential curative drug for the treatment of cognitive impairment.


Keywords: Acetylcholinesterase, Conyza bonariensis, scopolamine, tacrine


How to cite this article:
Saikia B, Buragohain L, Barua CC, Sarma J, Tamuli SM, Kalita DJ, Barua AG, Barua IC, Elancheran R. Evaluation of anti-amnesic effect of Conyza bonariensis in rats. Indian J Pharmacol 2022;54:102-9

How to cite this URL:
Saikia B, Buragohain L, Barua CC, Sarma J, Tamuli SM, Kalita DJ, Barua AG, Barua IC, Elancheran R. Evaluation of anti-amnesic effect of Conyza bonariensis in rats. Indian J Pharmacol [serial online] 2022 [cited 2022 May 18];54:102-9. Available from: https://www.ijp-online.com/text.asp?2022/54/2/102/344957





 » Introduction Top


For long, medicinal plants were used in the treatment of various diseases due to their remedial value. The treatment of Alzheimer's disease (AD) with allopathic medicine is not yet to be established, hence the world is thinking to investigate the benefits of medicinal herbs in the therapy of AD. The major reasons of AD arise to be decreased cholinergic activity, beta-amyloid peptides deposition in the brain, formation of neurofibrillary tangles inside nerve cells, and oxidative stress.[1] Till date, no drug can permanently cure AD, and the available drugs can only improve the symptoms or temporarily slow down its progression. The key approach for AD treatment is inhibition of acetylcholinesterase (AChE) and other cognitive impairments.[2],[3]

Conyza bonariensis (Family: Asteraceae) is a perennial erect herb of cosmopolitan distribution. The plant appears in Northeast India as a weed of upland situations in the late winter and summer seasons. The leaves of the plant have a laxative effect,[4] while flowers as aphrodisiac and emollient.[5] The phytochemical constituents, i.e., flavonoids, flavonoid glycosides, stigmasterol, ergosterol,[6] cyclopropenoids,[7] and anthocyanin pigments,[6] are found in C. bonariensis. The anticonvulsant,[4] antitumor,[8] hypoglycemic,[9] and estrogenic activities[10] of the plant have been evaluated. Antidiarrheal, antioxidant, anti-inflammatory, antibacterial, antifungal, and cytotoxic activities of C. bonariensis have also been reported.[11],[12],[13],[14],[15] Anti-inflammatory activity is mainly due to the presence of phytochemicals, mostly concentrated in the hexane fraction of the extract.[16] In mice, C. bonariensis attenuated lipopolysaccharide-induced depressive-like behavior.[17]

Scopolamine is a muscarinic receptor antagonist and can cause a transient disruption of memory in experimental animals by increasing the AChE activity, which decreases the endogenous acetylcholine content at cholinergic synapses resulting memory loss.[18],[19]

In view of properties such as antidepressant, antioxidant, and anti-inflammatory and the presence of phytoconstituent like flavonoids, C. bonariensis could possess memory-enhancing activity and this forms the basis of this study.

Preliminary behavioral studies were performed for different extracts (ethanol, hydroethanolic, aqueous, petroleum ether, n-hexane, ethyl acetate, and chloroform) using Morris water maze to investigate scopolamine-induced amnesia. Among them, petroleum ether extract of C. bonariensis (PECB) was found to be more active than the other extracts, hence the present study investigates the memory-enhancing activity of PECB using Barnes maze. The biochemical parameters and molecular mechanisms of PECB in scopolamine-induced impaired memory were also evaluated.


 » Materials and Methods Top


Drugs and reagents

Drugs/reagents were purchased from different sources. Scopolamine hydrobromide, tacrine hydrochloride (Sigma-Aldrich, USA), enzyme-linked immunosorbent assay (ELISA) kit (Ray Bio®, USA), TRIzol® reagent (Invitrogen, USA), and cDNA synthesis kit (Thermo Scientific, EU, Lithuania).

Preparation of extract

C. bonariensis leaves were taken from Jorhat, Assam, India. Dr. Iswar Chandra Barua, Principal Scientist, AAU, has authenticated it (voucher no: 5189 dated May 20, 2016). The leaves were dried at 35–40°C for a week and pulverized. Petroleum ether extract was prepared as per standard methods in Soxhlet extractor and rotary evaporator.

Acute toxicity study

To evaluate the acute toxicity, PECB (2000 mg/kg) p. o. was given to Swiss albino mice as per the protocol of OECD 423. They were observed for 24 h for any sign of gross abnormality or mortality and then till 14 days. There was no mortality at 2000 mg/kg dose in the oral acute toxicity study. Therefore, we have selected the following doses of the extract, i. e., 50, 100, and 200 mg/kg, p. o.

Experimental design

Male Wistar rats were selected for the study. The feeding and drinking water were provided ad libitum. Experimental works were done as per guidelines recommended by CPCSEA and approved by the Institutional Animal Ethical Committee (770/ac/CPCSEA/FVSc, AAU/IAEC/16-17/452).

Treatment schedule

A total of 36 rats were equally distributed into six groups with six numbers in each.

  • Group 1: Normal control (Tween 80 and saline p. o.)
  • Group 2: Negative control (scopolamine 0.4 mg/kg i. p.)
  • Group 3: Standard control (tacrine 3 mg/kg i. p. and scopolamine 0.4 mg/kg i. p.)
  • Group 4: PECB 50 mg/kg p. o. and scopolamine 0.4 mg/kg i. p.
  • Group 5: PECB 100 mg/kg p. o. and scopolamine 0.4 mg/kg i. p.
  • Group 6: PECB 200 mg/kg p. o. and scopolamine 0.4 mg/kg i. p.


Scopolamine was injected into rats after 45 min of respective drug treatment. Following an hour of scopolamine administration, the behavioral study was performed and the rats were sacrificed under i. m. injection of ketamine (80 mg/kg) and xylazine (10 mg/kg).[20],[21] The brains were rapidly dissected out, and the hippocampus was isolated and stored at −80°C until detection.

Gas chromatography–mass spectrometry method

PECB extract was studied by utilizing a Shimadzu 17A-GC chromatograph. For separation, a fused silica column SPB coated with poly (dimethylsiloxane) was used. The temperature of injector port and detector was 225°C and 250°C, respectively. The temperature of the oven was fixed at 60°C and elevated to 225°C. Recognition of compounds by comparing the retention indices and their mass spectral fragmentation patterns with database in spectrometer.

Barnes maze

To assess spatial learning Barnes maze was used,[22] which is a circular platform having 21 holes located 6 cm from the edge and distributed equally. The maze uses rat's natural aversion to open illuminated places, so the subjects were motivated by bright light to locate an escape hole which leads to a dark box. On days 1 and 2, a pretrial was arranged before the start of the trial. Total latency describes the time taken by the rat to enter the escape hole on the maze were monitored and recorded via a digital video tracking system ANY-mazeTM (Sloelting and Co.,USA).

Estimation of acetylcholinesterase activity

As per the procedure depicted by Ellman et al.,[23] AChE assay was done.

Estimation of β-amyloid1-42

The level of β-amyloid1-42 in the brain tissue was estimated by sandwich ELISA using rat β-amyloid1-42 (Bioassay Technology Laboratory, Shanghai, China) kit.

Assessment of antioxidant parameters

Lipid peroxidation (LPO),[24] nitric oxide (NO),[25] reduced glutathione (GSH),[26] superoxide dismutase (SOD),[27] and catalase (CAT)[28] were measured spectrophotometrically (Multiskan Go, Thermo Fisher) as per standard protocol.

Evaluation of inflammatory cytokines

Amounts of interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), and IL-10 in the brain tissues were estimated by using cytokine ELISA kits.

Reverse transcription–polymerase chain reaction analysis

The mRNA expression levels of genes encoding AChE, Nrf2, Tau, PP2A, HO-1, and NF-κB in the hippocampus were measured by reverse transcription–polymerase chain reaction (RT-PCR). Amplification was performed in a thermal cycler using a standard protocol (Applied Biosystems–Veriti Thermal Cycler).

SDS-polyacrylamide gel electrophoresis immunoblot analysis

Western blotting was performed to analyze the expression of TrkB, BDNF, Bax, and caspase-3 proteins in rats' hippocampus. The 50 μg of total extracted proteins of the samples were added with an equivalent amount of Laemmli buffer and then boiled and cooled. Preparation was loaded and separated in 10% polyacrylamide gels having sodium dodecyl sulfate. For immunoblot analysis, the separated proteins were transferred to PVDF membranes. Blocking was done at room temperature for 1 h with the help of 3% bovine serum albumin in 1X TBST and incubated the membranes with primary antibodies (TrkB, BDNF, Bax, and caspase-3) at a dilution of 1:500 at 4°C for overnight. On the subsequent day, membrane was washed with 1X TBST and incubated with respective secondary antibodies conjugated to HRP at a dilution of 1:5000 for 1 h. The bands were visualized using TMB blotting solution and quantified by using ImageJ software.

Statistical analysis

Data were revealed as mean ± standard error of the mean. The statistical study was carried out by one-way analysis of variance succeeded by post hoc Tukey's multiple range tests. Results were found significant when P < 0.05.


 » Results Top


Chemistry

The major constituents in the petroleum ether extract were found to be 64.25% of the identified compounds (1–18); of these, beta-amyrin (12.7%), alpha-amyrin (8.9%), l-(+)-ascorbic acid 2,6-dihexadecanoate (4.6%), caryophyllene oxide (5.6%) and spathulenol (7.7%) were the major constituents [Figure 1].
Figure 1: The structure of different identified compounds in the petroleum ether extract of Conyza bonariensis (PECB) by gas chromatography–mass spectrometry

Click here to view


Effect of PECB on escape latency

A significant increase in EL was observed in scopolamine-treated (P < 0.001) rats than the control group. Conversely, pretreatment with standard drug tacrine (P < 0.001) and PECB at all the three doses significantly reduced EL than the scopolamine-administered group [Figure 2]a.
Figure 2: Effect of PECB pretreatment on scopolamine-induced amnesia by Barnes maze model in rats. (a) Escape latency, (b) acetylcholinesterase activity, (c) β amyloid1-42 activity. Values are expressed as mean ± standard error of the mean (n = 6). *P < 0.05, **P < 0.01, ***P < 0.001 compared with normal control group; #P < 0.05, ###P < 0.001 compared with scopolamine-treated group

Click here to view


Effect of PECB on brain acetylcholinesterase activity

When compared with the control group, scopolamine administration revealed a marked elevation of AChE activity in rats' brain tissues (P < 0.01). However, pretreatment with tacrine and PECB at the highest dose revealed a significant (P < 0.05) decrease in AChE activity than the scopolamine-administered group [Figure 2]b.

Effect of PECB on β-amyloid1-42 activity

In the brain of the scopolamine-treated group, the β-amyloid1-42 activity was significantly (P < 0.001) higher than the control group. In tacrine pretreated groups, β-amyloid1-42 activity in hippocampus tissue was markedly lower than scopolamine-administered batch. Pretreatment with PECB considerably (P < 0.001) reduced β-amyloid1-42 activity dose dependently in contrast to the scopolamine-administered group [Figure 2]c.

Effect of PECB on antioxidant parameters

LPO and NO levels increased significantly in the scopolamine-treated group (P < 0.001) than the control group. Standard drug tacrine (P < 0.001) and test drug PECB at the dose of 100 and 200 mg/kg treated groups revealed a significant decline in LPO [Figure 3]a and nitrite level than scopolamine-administered batch [Figure 3]b. SOD and CAT levels were markedly reduced (P < 0.001) in the brain of scopolamine-treated rats than the control group. Conversely, pretreatment with standard drug tacrine and the extract at the highest dose increased the levels of SOD (P < 0.001) [Figure 3]c and CAT (P < 0.05) [Figure 3]d than the scopolamine-treated group. GSH level was decreased significantly in the hippocampus of scopolamine (P < 0.001) treated rats than the control group. Depletion in GSH level was improved by pretreatment with tacrine and all the three doses of extract dose dependently than the scopolamine-administered group [Figure 3]e.
Figure 3: Effect of PECB pretreatment on scopolamine-induced changes on in vivo antioxidant parameters. (a) Lipid peroxidation, (b) nitric oxide, (c) superoxide dismutase, (d) catalase, (e) glutathione. Values are expressed as mean ± standard error of the mean (n = 6). *P < 0.05, **P < 0.01, ***P < 0.001 compared with normal control group; # P < 0.05, ##P < 0.01, ###P < 0.001 compared with scopolamine-treated group

Click here to view


Effect of PECB on inflammatory cytokines

TNF-α and IL-1β levels were markedly elevated (P < 0.001) in scopolamine-administered rats than control batch. Standard drug tacrine (P < 0.001 and P < 0.001), and the extract at the dose of 100 and 200 mg/kg, could markedly restore TNF-α [Figure 4]a and IL-1β levels [Figure 4]b as compared with scopolamine-administered group. IL-10 level significantly declined in the scopolamine-administered group than the control group. This significant fall in the IL-10 level was improved by treatment with standard drug tacrine and test drug PECB at the highest dose [Figure 4]c.
Figure 4: Effect of PECB pretreatment on pro- and anti-inflammatory cytokine activity on scopolamine-induced amnesia in rats. (a) Tumor necrosis factor-α, (b) interleukin-1β, (c) interleukin-10. Values are expressed as mean ± standard error of the mean (n = 6). ***P < 0.001 compared with normal control group; #P < 0.05, ##P < 0.01, ###P < 0.001 compared with scopolamine-treated group

Click here to view


Effects of PECB on acetylcholinesterase, Nrf2, HO-1, NF-κB, PP2A, and Tau gene expression

The RT-PCR assay of AChE, Nrf2, HO-1, NF-κB, PP2A, and Tau genes is presented in [Figure 5]a. The mRNA expression of AChE, NF-κB, and Tau was significantly (P < 0.001) upregulated in scopolamine-administered rats than the control group. Administration of PECB significantly downregulated the mRNA expression of AChE [Figure 5]b, NF-κB [Figure 5]c, and Tau [Figure 5]d genes in the hippocampus of rats similar to standard drug tacrine in comparison to scopolamine-administered rats. Conversely, mRNA expression of Nrf2, HO-1, and PP2A were markedly downregulated (P < 0.001) in the scopolamine-administered batch than the control group. PECB markedly upregulated the expression of Nrf2 [Figure 5]e, HO-1 [Figure 5]f, and PP2A [Figure 5]g genes in the hippocampus of rats, similar to tacrine, than scopolamine-administered rats.
Figure 5: Effect of PECB pretreatment on scopolamine-induced amnesia on acetylcholinesterase, NF-κB, Tau Nrf2, HO-1, and PP2A mRNA expression in the hippocampus of rats. (a) Lane 1: DNA marker, lane 2: normal control, lane 3: scopolamine, lane 4: tacrine + scopolamine, lane 5: PECB (50 mg/kg) + scopolamine, lane 6: PECB (100 mg/kg) + scopolamine, lane 7: PECB (200 mg/kg) + scopolamine. Quantitative data expression of (b) acetylcholinesterase, (c) NF-κB, (d) Tau, (e) Nrf2, (f) HO-1, and (g) PP2A. **P < 0.01, ***P < 0.001 compared with normal control group; #P < 0.05, ##P < 0.01, ###P < 0.001 compared with scopolamine-treated group

Click here to view


Effect of PECB on BDNF, TrkB, Bax, and caspase-3 expression by immunoblotting

The immunoblotting assay of BDNF, TrkB, Bax, and caspase-3 is presented in [Figure 6]a. Scopolamine significantly (P < 0.001) downregulated BDNF and TrkB protein expression in rats' hippocampus than control batch. Pretreatment with PECB at higher doses markedly upregulated BDNF (P < 0.05) [Figure 6]b and TrkB (P < 0.01) protein expression [Figure 6]c. Scopolamine administration (P < 0.001) markedly upregulated the protein expression of caspase-3 and Bax in comparison to control rats. Pretreatment with PECB in scopolamine-pretreated rats significantly downregulated Bax [Figure 6]d and caspase-3 [Figure 6]e protein in rats' hippocampal tissues similar to standard drug tacrine (P < 0.001) than scopolamine-treated rats.
Figure 6: Effect of PECB pretreatment on scopolamine-induced amnesia on BDNF, TrkB, Bax, and caspase-3 protein expression in rats. (a) lane 1: DNA marker, lane 2: control, lane 3: scopolamine, lane 4: tacrine + scopolamine, lane 5: PECB (50 mg/kg) + scopolamine, lane 6: PECB (100 mg/kg) + scopolamine, lane 7: PECB (200 mg/kg) + scopolamine. Quantitative data expression of (b) BDNF, (c) TrkB, (d) Bax, and (e) caspase-3 protein levels was assessed using ImageJ software. *P < 0.05, **P < 0.01, ***P < 0.001 compared with control; #P < 0.05, ##P < 0.01, ###P < 0.001 compared with scopolamine-treated group

Click here to view



 » Discussion Top


The typical symptoms of AD were progressive impairment of cognition and affective disorder. In AD, the cognitive deficiency is mainly related to cholinergic neurotransmission disorder in the cerebral hippocampus.

To evaluate the effects of C. bonariensis on spatial learning and memory, Barnes maze task was performed in rats. Pretreatment with PECB 200 mg/kg reduces the escape latency which suggested that C. bonariensis has an anti-amnesic effect in the scopolamine-induced model. The effect was also dose dependent, the maximum effect was observed at 200 mg/kg oral dose, which significantly reversed the elevated AChE level. Thus, the result suggests that cognition-enhancing property of PECB could be due to the inhibition of AChE enzyme.

Aggregation of β-amyloid protein in the brain tissue leads to cognition impairment which is characterized by plaque deposition in extracellular spaces, and β-amyloid1-42 is predominant in the brain. Pretreatment with PECB at the given dose resulted in a significant decrease in the amount of β-amyloid1-42 in the brain.

In various neurodegenerative diseases, oxidative stress plays an important role.[29] The hippocampus is highly vulnerable to oxidative stress and plays a vital role in short- and long-term memory.[30] Our results show that scopolamine induction increased the levels of LPO and NO; following administration of PECB or tacrine, a significant attenuation of their levels was visible. SOD and CAT protect the cells from oxidative stress by detoxifying the superoxide anion and hydrogen peroxide, respectively.[31] In our study, scopolamine significantly decreased the antioxidant capacity of SOD, CAT, and GSH in the hippocampus, whereas pretreatment with PECB significantly ameliorated these levels to restore neuronal plasticity and memory function dose dependently.

PECB caused a decrease in Nrf2 level and prevented the scopolamine-induced increase in TNF-α and IL-1β levels dose dependently. The extract also prevented the loss of anti-inflammatory cytokine IL-10, showing anti-inflammatory potential.

PECB restored PP2A activity/mRNA expression and decreased Tau hyperphosphorylation which prevents neurofibrillary tangles formation and deposition. BDNF act as an indicative biomarker in mild cognitive impairment and early AD patients.[32] Treatment with PECB reinstates the amount of BDNF proteins with its receptor, TrkB in the hippocampus, noticeably downregulated by scopolamine.

One of the major causes of neurodegeneration is apoptosis. Caspase-3 is the terminal executing enzyme in apoptosis.[33] Bcl-2 plays an important role in anti-apoptosis, whereas Bax protein is responsible for promoting cell apoptosis.[34] Our study showed that PECB remarkably downregulated Bax and caspase-3 expressions in the hippocampus.


 » Conclusion Top


Our results signified that PECB has an anti-amnesic effect by mechanism such as antioxidant action, cholinergic property, hippocampal neurogenesis, and its BDNF pathway. This suggests that the C. bonariensis may be a promising alternative treatment for patients with neurodegenerative disorders. The weed is mostly recognized as ornamental herb, but our study is in a new direction out of serendipity. Since the active compounds have been identified, further study with the pure compound may yield new drug molecule in future.

Acknowledgment

We would like to thank the Director of Research (Vety), AAU, Khanapara.

Financial support and sponsorship

This study was financially supported by the Defence Research and Development Organisation, Government of India.

Conflicts of interest

There are no conflicts of interest.



 
 » References Top

1.
Mohandas E, Rajmohan V, Raghunath B. Neurobiology of Alzheimer's disease. Indian J Psychiatry 2009;51:55-61.  Back to cited text no. 1
[PUBMED]  [Full text]  
2.
Lane RM, Potkin SG, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol 2006;9:101-24.  Back to cited text no. 2
    
3.
Giacobini E. Cholinesterase inhibitors: New roles and therapeutic alternatives. Pharmacol Res 2004;50:433-40.  Back to cited text no. 3
    
4.
Kasture VS, Chopde CT, Deshmukh VK. Anticonvulsive activity of Albizzia lebbeck, Hibiscus rosa sinesis and Butea monosperma in experimental animals. J Ethnopharmacol 2000;71:65-75.  Back to cited text no. 4
    
5.
Pullaiah T. Medicinal Plants in Andhra Pradesh. New Delhi: Regency Publication; 2002. p. 143-4.  Back to cited text no. 5
    
6.
Prajapati ND, Purohit SS, Sharma AK, Kumar T. A Hand Book of Medicinal Plants. A Complete Source Book. India: Agrobios; 2003.  Back to cited text no. 6
    
7.
Nakatani M, Matsuoka K, Uchio Y, Hase T. Two aliphatic enone ethers from Conyza bonariensis. Phytochem 1994;35:1245-7.  Back to cited text no. 7
    
8.
Jain SC, Purohit M. Anticancerous reagents from some selected Indian medicinal plants. I: Screening studies against sarcoma 180 ascites. J Res Ayurveda Siddha 1987;8:70-3.  Back to cited text no. 8
    
9.
Sachdewa A, Khemani LD. A preliminary investigation of the possible hypoglycemic activity of Hibiscus rosa-sinensis. Biomed Environ Sci 1999;12:222-6.  Back to cited text no. 9
    
10.
Murthy DR, Reddy CM, Patil SB. Effect of benzene extract of Hibiscus rosa sinensis on the estrous cycle and ovarian activity in albino mice. Biol Pharm Bull 1997;20:756-8.  Back to cited text no. 10
    
11.
Bukhari IA, Shah AJ, Khan RA, Meo SA, Khan A, Gilani AH. Gut modulator effects of Conyza bonariensis explain its traditional use in constipation and diarrhea. Eur Rev Med Pharmacol Sci 2013;17:552-8.  Back to cited text no. 11
    
12.
Maia JG, da Silva MH, Zoghbi MD, Andrade EH. Composition of the essential oils of Conyza bonariensis (L.) Cronquist. J Essent Oil Res 2002;14:325-6.  Back to cited text no. 12
    
13.
Hayet E, Maha M, Samia A, Ali MM, Souhir B, Abderaouf K, et al. Antibacterial, antioxidant and cytotoxic activities of extracts of Conyza canadensis (L.) Cronquist growing in Tunisia. Med Chem Res 2009;18:447-54.  Back to cited text no. 13
    
14.
Shah NZ, Muhammad N, Khan AZ, Muhammad S, Khan H, Azeem S, et al. Phytochemical analysis and antioxidant studies of Conyza bonariensis. Afr J Plant Sci 2013;6:109-12.  Back to cited text no. 14
    
15.
Shah NZ, Muhammad N, Khan AZ, Muhammad S, Khan H, Azeem S, et al. Antimicrobial and phytotoxic properties of Conyza bonariensis. Pharm Pharmacol Res 2013;1:8-11.  Back to cited text no. 15
    
16.
Bukhari IA, Sheikh SA, Shaikh NA, Assiri AM, Gilani AH. Peripheral analgesic and anti-inflammatory Activities of the methanolic extracts of Conyza bonariensis and its fractions in rodents models. Int J Pharmacol 2018;14:144-50.  Back to cited text no. 16
    
17.
Barua CC, Sulakhiya K, Haloi P, Buragohain L, Saikia B, Barua IC, et al. Erigeron linifolius attenuates lipopolysachharide-induced depressive-like behavior in mice by impeding neuroinflammation, oxido-nitrosative stress, and upregulation of tropomyosin receptor kinase B-derived neurotrophic factor and monoaminergic pathway in the hippocampus. Pharmacogn Mag 2019;15:92-103.  Back to cited text no. 17
    
18.
Golechha M, Bhatia J, Arya DS. Studies on effects of Emblica officinalis (Amla) on oxidative stress and cholinergic function in scopolamine induced amnesia in mice. J Environ Biol 2012;33:95-100.  Back to cited text no. 18
    
19.
Reddy P. Fluorinated Compounds in Enzyme catalysed reactions. In: Organofluorine Compounds in Biology and Medicine. 1st ed. Elsevier; 2015. p. 29-57.  Back to cited text no. 19
    
20.
Villard V, Espallergues J, Keller E, Alkam T, Nitta A, Yamada K, et al. Antiamnesic and neuroprotective effects of the aminotetrahydrofuran derivative ANAVEX1-41 against amyloid beta (25-35)-induced toxicity in mice. Neuropsychopharmacology 2009;34:1552-66.  Back to cited text no. 20
    
21.
Bhuvanendran S, Kumari Y, Othman I, Shaikh MF. Amelioration of cognitive deficit by embelin in a scopolamine-induced Alzheimer's disease-like condition in a rat model. Front Pharmacol 2018;9:665.  Back to cited text no. 21
    
22.
Barnes CA. Memory deficits associated with senescence: A neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 1979;93:74-104.  Back to cited text no. 22
    
23.
Ellman GL, Courtney KD, Andres V Jr., Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88-95.  Back to cited text no. 23
    
24.
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxidation in animal tissues by the thiobarbituric acid reaction. Anal Biochem 1979;95:351-8.  Back to cited text no. 24
    
25.
Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001;5:62-71.  Back to cited text no. 25
    
26.
Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959;82:70-7.  Back to cited text no. 26
    
27.
Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 1974;47:469-74.  Back to cited text no. 27
    
28.
Sinha AK. Colorimetric assay of catalase. Anal Biochem 1972;47:389-94.  Back to cited text no. 28
    
29.
Polidori MC, Mecocci P. Plasma susceptibility to free radical-induced antioxidant consumption and lipid peroxidation is increased in very old subjects with Alzheimer disease. J Alzheimers Dis 2002;4:517-22.  Back to cited text no. 29
    
30.
Mattson MP, Pedersen WA, Duan W, Culmsee C, Camandola S. Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer's and Parkinson's diseases. Ann N Y Acad Sci 1999;893:154-75.  Back to cited text no. 30
    
31.
Liu RH, Runyon RS, Wang YC, Oliver SG, Fan TP, Zhang WD. Deciphering ancient combinatorial formulas: The Shexiang Baoxin Pill. Science 2015;347:540-2.  Back to cited text no. 31
    
32.
O'Bryant SE, Hobson V, Hall JR, Waring SC, Chan W, Massman P, et al. Brain-derived neurotrophic factor levels in Alzheimer's disease. J Alzheimers Dis 2009;17:337-41.  Back to cited text no. 32
    
33.
Nuñez G, Benedict MA, Hu Y, Inohara N. Caspases: The proteases of the apoptotic pathway. Oncogene 1998;17:3237-45.  Back to cited text no. 33
    
34.
Krajewski S, Krajewska M, Shabaik A, Miyashita T, Wang HG, Reed JC. Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol 1994;145:1323-36.  Back to cited text no. 34
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6]



 

Top
Print this article  Email this article
 

    

Site Map | Home | Contact Us | Feedback | Copyright and Disclaimer | Privacy Notice
Online since 20th July '04
Published by Wolters Kluwer - Medknow