IPSIndian Journal of Pharmacology
Home  IPS  Feedback Subscribe Top cited articles Login 
Users Online : 14124 
Small font sizeDefault font sizeIncrease font size
Navigate Here
 »   Next article
 »   Previous article
 »   Table of Contents

Resource Links
 »   Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »Related articles
 »   Citation Manager
 »   Access Statistics
 »   Reader Comments
 »   Email Alert *
 »   Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded146    
    Comments [Add]    
    Cited by others 6    

Recommend this journal


Year : 2020  |  Volume : 52  |  Issue : 2  |  Page : 94-101

Network pharmacology-based study on the mechanism of Schisandra chinensis for treating Alzheimer's disease

1 Department of Neurology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shangxi, China
2 School of Life Science, Beijing Institute of Technology, Beijing, China
3 Graduate School of Southern Anhui Medical College, Anhui, China
4 Department of Radiology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shangxi Province, China

Correspondence Address:
Han Xiaowei
Department of Radiology, Heping Hospital affiliated to Changzhi Medical College, No. 110 South Yanan Road, Changzhi, Shangxi Province
Liu Hong
Department of Neurology, Heping Hospital affiliated to Changzhi Medical College, No. 110 South Yanan Road, Changzhi, Shangxi Province
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijp.IJP_515_19

Rights and Permissions

BACKGROUND: Alzheimer's disease (AD) is a mental illness that poses a serious threat to human health worldwide. Schisandra chinensis is a natural herb that can treat the effects of AD, but its specific mechanism is still unclear. The purpose of this study was to explore the potential components and pharmacological pathways of S. chinensis in the treatment of AD. MATERIALS AND METHODS: In this study, we investigated the compound of S. chinensis and the effects of it on AD by network pharmacology. Meanwhile, the potential mechanism was proved in vitro. RESULTS: The results showed that S. chinensis contained 173 compounds. Compound-target network confirmed that (E)-9-Isopropyl-6-Methyl-5,9-Decadiene-2-One, 1-Phenyl-1,3-Butanedion, nootkatone and phenyl-2-Propanone were the main chemical constituents which highly aimed at APOE, CACNA1D, GRIN2A, and PTGS2. KEGG and GO enrichment analysis indicated that the main pathways involved neural-related signaling pathways and functions, such as nicotine addiction, GABAergic synapse, Ca2+ signaling pathway, AD, and so on. Validation experiments showed that nootkatone was able to exert anti-apoptotic effects related to Ca2+ signaling pathway by inhibiting nitric oxide production, enhancing the activity of antioxidant enzymes, upregulating the expression of anti-oxidation and anti-apoptotic proteins in vitro. CONCLUSIONS: These results illustrated that S. chinensis could regulate neuronal apoptosis through the calcium signaling pathway to exert anti-AD by integrating multi-component, multi-target and multi-pathway.


Print this article     Email this article

Site Map | Home | Contact Us | Feedback | Copyright and Disclaimer | Privacy Notice
Online since 20th July '04
Published by Wolters Kluwer - Medknow