|
|
LETTER TO THE EDITOR |
|
|
|
Year : 2019 | Volume
: 51
| Issue : 6 | Page : 416-417 |
|
Fluorescence spectra of chloroquine suspension: A probable tool for quality assessment of the most common antimalarial in a user-friendly manner
Sumanpreet Kaur1, Nikhil Prasad2, Abhikarsh Srivastava2, Monu Kumari1, Sukhpreet Singh1, Deepak Kumar1, Rajasris Bhattacharyya1, Dibyajyoti Banerjee1
1 Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, Haryana, India 2 Department of Science, Govt. PG College, Panchkula, Haryana, India
Date of Submission | 12-Jul-2019 |
Date of Decision | 02-Aug-2019 |
Date of Acceptance | 30-Dec-2019 |
Date of Web Publication | 16-Jan-2020 |
Correspondence Address: Prof. Dibyajyoti Banerjee Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh - 160 012 India
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/ijp.IJP_423_19
How to cite this article: Kaur S, Prasad N, Srivastava A, Kumari M, Singh S, Kumar D, Bhattacharyya R, Banerjee D. Fluorescence spectra of chloroquine suspension: A probable tool for quality assessment of the most common antimalarial in a user-friendly manner. Indian J Pharmacol 2019;51:416-7 |
How to cite this URL: Kaur S, Prasad N, Srivastava A, Kumari M, Singh S, Kumar D, Bhattacharyya R, Banerjee D. Fluorescence spectra of chloroquine suspension: A probable tool for quality assessment of the most common antimalarial in a user-friendly manner. Indian J Pharmacol [serial online] 2019 [cited 2023 Oct 4];51:416-7. Available from: https://www.ijp-online.com/text.asp?2019/51/6/416/276046 |
Sir,
Chloroquine is a popular drug used in the treatment of malaria. Due to its good safety profile, it can be used in pregnant mothers and children. Furthermore, high elimination time of the drug provides long posttreatment preventive effect.[1] However, the poor or substandard quality of chloroquine is a worldwide concern which imposes life at risk and contributes toward the drug resistance.[2],[3] Therefore, quality assessment of chloroquine is of much concern.[4]
In the market, chloroquine is commonly available as a suspension for use in the pediatric population and tablets for use in adults. We feel that strict quality assurance of suspension is warranted as it is used in the pediatric population.
In this context, we have studied the fluorescence emission spectra of chloroquine diphosphate (MP Biomedicals Catalog No. 193919, 10 mg/ml in distilled water) at λEx 300 and found that chloroquine diphosphate in distilled water gives fluorescence emission in the range of 330–400 nm [Figure 1]a. Similarly, the fluorescence emission spectra of chloroquine phosphate suspension containing 10 mg/ml chloroquine (Lariago manufactured by Ipca Laboratories Ltd. Sejavta, Ratlam 457002. Batch No. GFA 018045R) were also studied [Figure 1]b. The spectrum of distilled water is given in [Figure 1]c. TECAN Infinite 200 Pro M PLEX multimode reader is used throughout the study setting the instrument in default mode. The chloroquine suspension contains sunset yellow, which is a synthetic food color. The sunset yellow is a fluorescent material which, when excited (λEx 310–410 nm), gives emission at 592 nm.[5] | Figure 1: Fluorescence emission scan of (a) pure chloroquine diphosphate (10 mg/ml), (b) chloroquine suspension (10 mg/ml), and (c) distilled water at λEx 300 nm (Y-axis represents arbitrary fluorescence unit and X-axis represents wavelength in nm). Effect of different concentrations of chloroquine suspension on the fluorescence intensity (d) up to 0.625 mg/ml and (e) up to 1 mg/ml of drug (Y-axis represents arbitrary fluorescence unit and X-axis represents concentration in mg/ml)
Click here to view |
We have observed that outside the fluorescence emission range of chloroquine and sunset yellow, the suspension shows a typical pattern of emission when excited at 300 nm [Figure 1]b. However, in pure chloroquine and the suspension when excited at 300 nm, maximum emission is noted at 357 ± 20 nm.
It is interesting to note that at λEx 300 nm/λEm 357 nm, the fluorescent intensity increases linearly with increasing concentration of chloroquine suspension in distilled water (up to 0.625 mg/ml) [Figure 1]d. However, at higher concentration of chloroquine, the fluorescence intensity follows the logarithmic curve pattern [Figure 1]e.
We feel that the addition of sunset yellow in the suspension is the causative factor for deviation of the spectra of chloroquine diphosphate and the suspension, although the emission maximum is the same. We recommend more experimental study in the said direction, and by doing so, we feel that algorithm can be developed for quality control of chloroquine suspension by studying its fluorescence spectra without estimating chloroquine by tedious extraction–purification steps.
Acknowledgment
Sumanpreet Kaur and Dibyajyoti Banerjee acknowledge PGIMER, Chandigarh, for financial assistance. Monu Kumari acknowledges CSIR, New Delhi, India, for the award of fellowship (Dec. 2018). Sukhpreet Singh acknowledges UGC, India, for providing fellowship (F. No. 16-6(Dec. 2017)/2018(NET/CSIR). DK acknowledges CSIR, New Delhi, India, for providing fellowship (File No: 09/141 (0197)/2016-EMR-I).
Financial support and sponsorship
Nil.
Conflicts of interest
There are no conflicts of interest.
» References | |  |
1. | Krishna S, White NJ. Pharmacokinetics of quinine, chloroquine and amodiaquine. Clinical implications. Clin Pharmacokinet 1996;30:263-99. |
2. | Johnston A, Holt DW. Substandard drugs: A potential crisis for public health. Br J Clin Pharmacol 2014;78:218-43. |
3. | Newton PN, Caillet C, Guerin PJ. A link between poor quality antimalarials and malaria drug resistance? Expert Rev Anti Infect Ther 2016;14:531-3. |
4. | Tackman EC, Trujillo MJ, Lockwood TL, Merga G, Lieberman M, Camden P. Identification of substandard and falsified antimalarial pharmaceuticals chloroquine, doxycycline, and primaquine using surface-enhanced Raman scattering. Anal Methods 2018;10:4718-22. |
5. | Chen GQ, Wu YM, Wang J, Zhu T, Gao SM. Fluorescence spectroscopy study of synthetic food colors. Guang Pu Xue Yu Guang Pu Fen Xi 2009;29:2518-22. |
[Figure 1]
This article has been cited by | 1 |
Quantitative Fundus Autofluorescence in Systemic Chloroquine/Hydroxychloroquine Therapy: One Year Follow-Up |
|
| Victoria Radun, Andreas Berlin, Ioana-Sandra Tarau, Nikolai Kleefeldt, Clara Reichel, Jost Hillenkamp, Frank G. Holz, Kenneth R. Sloan, Marlene Saßmannshausen, Thomas Ach | | Translational Vision Science & Technology. 2023; 12(7): 8 | | [Pubmed] | [DOI] | | 2 |
Synthesis, Characterization, and Acute Cytotoxicity Evaluation of Chloroquine Encapsulating Liposomes |
|
| Nathan D. Donahue, Ellen A. Vance, Vinit Sheth, Emmy R. Francek, Stefan Wilhelm | | Micro. 2023; 3(1): 51 | | [Pubmed] | [DOI] | |
|
 |
|