IPSIndian Journal of Pharmacology
Home  IPS  Feedback Subscribe Top cited articles Login 
Users Online : 4153 
Small font sizeDefault font sizeIncrease font size
Navigate Here
 »   Next article
 »   Previous article
 »   Table of Contents

Resource Links
 »   Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »Related articles
 »   Citation Manager
 »   Access Statistics
 »   Reader Comments
 »   Email Alert *
 »   Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded183    
    Comments [Add]    
    Cited by others 5    

Recommend this journal


Year : 2015  |  Volume : 47  |  Issue : 6  |  Page : 644-648

Effect of standardized fruit extract of Luffa cylindrica on oxidative stress markers in hydrogen peroxide induced cataract

1 Department of Pharmacology, Amity Institute of Pharmacy Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, India
2 Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India

Correspondence Address:
Prof. Shubhini A Saraf
Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0253-7613.169586

Rights and Permissions

Objective: The ability of Luffa cylindrica Roem fruit extract (LCE) to modulate biochemical parameters was investigated by in vitro studies for its role in hydrogen peroxide induced cataract on isolated goat lenses which were incubated for 72 h at 37°C. Materials and Methods: Test groups contained 5, 10, 15, 20, 25, and 30 µg/ml of LCE along with 1 ml of H2O2 (0.5 mM) as cataract inducer. Lenses were examined for morphological variation and transparency periodically during the incubation. Biochemical parameters such as superoxide dismutase (SOD), reduced glutathione (GSH), total protein content (TPC), and malondialdehyde (MDA) were estimated. Results: SOD, GSH, and TPC levels were found to increase proportionally with the concentration of LCE. However, MDA levels were found to be inversely proportional to the concentration of LCE. Opacity was graded as per “lens opacities classification system III.” Morphological examination suggested that LCE (25 µg/ml) maintained a vision for 44 h. No lens in LCE dose groups developed dense nuclear opacity after 24 h as opposed to 80% in negative control. Conclusion: The results suggest that LCE can delay the onset and/or prevent the progression of cataract which can be attributed to the presence of adequate phenolics, flavonoids, and Vitamin A and its high nutritional value. This preliminary study can be further synergized by testing LCE against other in vivo and in vitro models of cataract.


Print this article     Email this article

Site Map | Home | Contact Us | Feedback | Copyright and Disclaimer | Privacy Notice
Online since 20th July '04
Published by Wolters Kluwer - Medknow