IPSIndian Journal of Pharmacology
Home  IPS  Feedback Subscribe Top cited articles Login 
Users Online : 7182 
Small font sizeDefault font sizeIncrease font size
Navigate Here
  Search
 
  
Resource Links
 »  Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »Related articles
 »  Article in PDF (580 KB)
 »  Citation Manager
 »  Access Statistics
 »  Reader Comments
 »  Email Alert *
 »  Add to My List *
* Registration required (free)

 
In This Article
 »  Abstract
 » Introduction
 »  Materials and Me...
 » Results
 » Discussion
 » Acknowledgment
 »  References
 »  Article Figures
 »  Article Tables

 Article Access Statistics
    Viewed3188    
    Printed78    
    Emailed0    
    PDF Downloaded201    
    Comments [Add]    
    Cited by others 1    

Recommend this journal

 


 
 Table of Contents    
RESEARCH ARTICLE
Year : 2014  |  Volume : 46  |  Issue : 4  |  Page : 378-385
 

The role of adenosine receptors and endogenous adenosine in citalopram-induced cardiovascular toxicity


Department of Pharmacology, Dokuz Eylul University, School of Medicine, Inciralti, Izmir, Turkey

Date of Submission27-Jun-2013
Date of Decision11-Sep-2013
Date of Acceptance10-May-2014
Date of Web Publication4-Jul-2014

Correspondence Address:
Sule Kalkan
Department of Pharmacology, Dokuz Eylul University, School of Medicine, Inciralti, Izmir
Turkey
Login to access the Email id

Source of Support: The Scientifi c and Technological Research Council of Turkey., Conflict of Interest: None


DOI: 10.4103/0253-7613.135948

Rights and Permissions

 » Abstract 

Aim: We investigated the role of adenosine in citalopram-induced cardiotoxicity.
Materials and Methods: Protocol 1: Rats were randomized into four groups. Sodium cromoglycate was administered to rats. Citalopram was infused after the 5% dextrose, 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX; A 1 receptor antagonist), 8-(-3-chlorostyryl)-caffeine (CSC; A 2a receptor antagonist), or dimethyl sulfoxide (DMSO) administrations. Protocol 2: First group received 5% dextrose intraperitoneally 1 hour prior to citalopram. Other rats were pretreated with erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA; inhibitor of adenosine deaminase) and S-(4-Nitrobenzyl)-6-thioinosine (NBTI; inhibitor of facilitated adenosine transport). After pretreatment, group 2 received 5% dextrose and group 3 received citalopram. Adenosine concentrations, mean arterial pressure (MAP), heart rate (HR),  QRS duration and QT interval were evaluated.
Results: In the dextrose group, citalopram infusion caused a significant decrease in MAP and HR and caused a significant prolongation in QRS and QT. DPCPX infusion significantly prevented the prolongation of the QT interval when compared to control. In the second protocol, citalopram infusion did not cause a significant change in plasma adenosine concentrations, but a significant increase observed in EHNA/NBTI groups. In EHNA/NBTI groups, citalopram-induced MAP and HR reductions, QRS and QT prolongations were more significant than the dextrose group.
Conclusions: Citalopram may lead to QT prolongation by stimulating adenosine A 1 receptors without affecting the release of adenosine.


Keywords: Adenosine receptor, citalopram toxicity, endogenous adenosine, QT prolongation, rat


How to cite this article:
Oransay K, Hocaoglu N, Buyukdeligoz M, Tuncok Y, Kalkan S. The role of adenosine receptors and endogenous adenosine in citalopram-induced cardiovascular toxicity . Indian J Pharmacol 2014;46:378-85

How to cite this URL:
Oransay K, Hocaoglu N, Buyukdeligoz M, Tuncok Y, Kalkan S. The role of adenosine receptors and endogenous adenosine in citalopram-induced cardiovascular toxicity . Indian J Pharmacol [serial online] 2014 [cited 2021 Nov 30];46:378-85. Available from: https://www.ijp-online.com/text.asp?2014/46/4/378/135948



 » Introduction Top


Citalopram is a selective serotonin reuptake inhibitor (SSRI) that is widely prescribed for use a depressive illness and panic disorder. SSRIs are the second most common cause of antidepressant poisonings. [1] Citalopram is reported to be the only SSRI which requires routine cardiac monitoring in overdose. [2] In acute citalopram overdose, electrocardiagraphic abnormalities has been described in a number of large case series, including QT prolongation and torsades de pointes. [3]

Adenosine is an endogenous nucleoside that shows its well-known cardiovascular effects by A 1 , A 2a , and A 2b receptors. [4] Activation of A 1 receptors depresses heart by negative inotropic, chronotropic, and dromotropic effects. Activation of A 2 receptors cause a reduction in mean arterial pressure by causing a relaxation in vascular smooth muscle cells. [5]

Some studies have shown that adenosine A 1 receptor stimulation and/or endogenous adenosine may have a role in amitriptyline-a tricyclic antidepressant (TCA)-induced cardiovascular toxicity such as hypotension, QRS, and QT prolongation. [6],[7],[8],[9],[10] There is only one experimental study about the role of adenosine in cardiovascular effects of the citalopram. [11] It was observed that the negative inotropic and chronotropic effects induced by citalopram can be explained by the inhibition of re-uptake of adenosine or the activation of adenosine A 1 receptors. Therefore, aim of this study is to clarify the role of adenosine receptors and/or endogenous adenosine in the mechanism of the cardiovascular toxic effects induced by citalopram overdose in rats.


 » Materials and Methods Top


This study was supported by a grant from the Scientific and Technological Research Council of Turkey (TUBITAK, Project Number: 107S251). This experimental study was performed with adult male Wistar rats (n = 77), weighing 250 − 280 g. The animal experiments approved by the Committee of Animal Care and Use.

All rats were fasted overnight with free access to water. Rats were anesthetized with urethane/chloralose (500 mg/kg/50 mg/kg intraperitoneally). The trachea was cannulated for spontaneous breathing. The right common carotid artery was cannulated (PE 50 OD mm [in.].97 [.038] ID mm [in.].58 [.023]) for blood pressure measurements. The left external jugular vein and left femoral vein were cannulated for drug administration (0.05 mI/kg/min, Braun, Perfusor Compact S, Germany). After the cannulation procedure, animals were allowed to become stabilized for 15 minutes. Rats were excluded from the study which had a mean arterial pressure under 100 mmHg. The body temperature was kept at 37°C. [6]

The mean arterial pressure (MAP), heart rate (HR), electrocardiogram (ECG), and survival time were recorded for each rat during 60 minutes (MLT844 Physiological Pressure Transducer, Interlab LTD, Istanbul, Turkey; Powerlab/8SP Data Acquisition System, AD Instruments, United Kingdom).

Experimental Protocol

Experimental protocol 1: Evaluation of adenosine receptors in citalopram-induced cardiovascular toxicity

We tested 0.5 mg/kg/min, 1 mg/kg/min, 2 mg/kg/min; 4 mg/kg/min, and 8 mg/kg/min infusion doses of citalopram to determine a toxic dose of citalopram (n = 18). Citalopram infusion of 4 mg/kg/min caused a significant reduction in MAP and HR and a significant prolongation in QT interval and QRS durations after 10 th minute (P < 0.001, for all). Citalopram infusion of 8 mg/kg/min caused death at 15 th minute. Hence, 4 mg/kg/min citalopram infusion was used in the experimental protocol.

The cardiovascular effects of the mediators released from mast cells were prevented by the stimulation of adenosine A 3 receptors by using sodium cromoglycate-a mast cell stabilizator. The safe dose of sodium cromoglycate that did not significantly alter MAP, HR, QRS duration, and QT intervals was found to be 20 mg/kg bolus (n = 8). After the stabilization period, sodium cromoglycate was administered to all animals intravenously (i.v). After 10 minutes, rats were randomized into four groups [Table 1] as follows:
Table 1: Experimental design of Protocol 1 of the study to evaluate the role of adenosine receptors in citalopram-induced cardiovascular toxicity in rats

Click here to view


  • Group 1 (control, 5% dextrose, n = 7): Following the 20 minute infusion of 5% dextrose, citalopram (4 mg/kg/min) was infused for 60 minutes
  • Group 2 [8-Cyclopentyl-1,3-Dipropylxanthine, DPCPX, n = 7]: Following the 20 minute infusion of 20 μg/kg/min of DPCPX (selective adenosine A 1 receptor antagonist) [6] , citalopram (4 mg/kg/min) was infused for 60 minutes
  • Group 3 [8-(3-chlorostyryl) caffeine, CSC, n = 7]: Following the 20 minute infusion of 24 μg/kg/min of CSC (selective adenosine A 2a receptor antagonist) [6] , citalopram (4 mg/kg/min) was infused for 60 minutes
  • Group 4 (dimethyl sulfoxide, DMSO, n = 3):


Following the 20 minute infusion of 10% DMSO (solvent of DPCPX and CSC), citalopram (4 mg/kg/min) was administered for 60 minutes.

Protocol 2: Evaluation of endogenous adenosine in citalopram-induced cardiovascular toxicity

Ten percent DMSO [a solvent of erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) and S-(4-nitrobenzyl)-6-thioinosine (NBTI) in a preliminary study (n = 3)] did not increase the endogenous adenosine concentrations (0.7293 ± 0.06742, 0.6823 ± 0.1916; P > 0.05, the plasma adenosine concentrations at the beginning and end of the experiment, respectively) and it did not cause any change in the cardiovascular parameters.

Blood samples of 2 mL were collected from the rats under anesthesia from the tail vein 15 days before the experiment to measure basal plasma adenosine levels. After 1 week, the rats were randomized into three groups as follows [Table 2]:
Table 2: Experimental design of Protocol 2 of the study to evaluate the role of endogenous adenosine in citalopram-induced cardiovascular toxicity in rats

Click here to view


  • Group 1 (control, n = 8): The control group received 0.5 mL of 5% dextrose solution i.p. 1 hour before the cannulation (equal volume as the other groups). After the stabilization period, citalopram (4 mg/kg/min) was infused during 60 minutes
  • Group 2 (n = 8): EHNA, 10 mg/kg i.p-an inhibitor of adenosine deaminase (ADA) and NBTI, 1 mg/kg i.p-an inhibitor of facilitated adenosine transport were administered to the rats 1 hour before cannulation with the total volume of 0.5 mL. [12] After pretreatment with EHNA and NBTI, 5% dextrose (0.05 mL/kg/min) was infused for 60 minutes. This group was designed to determine the increase in adenosine availability
  • Group 3 (n = 8): EHNA (10 mg/kg i.p) and NBTI (1 mg/kg i.p) were administered to the rats 1 hour before the cannulation with the total volume of 0.5 mL. [12] After the pretreatment with EHNA and NBTI, citalopram (4 mg/kg/min) was infused during 60 minutes.


At the end of experiment, blood samples were collected from the carotid artery. The HPLC-fluorometry system (Shimadzu, Osaka, Japan) was used for measurement of plasma adenosine concentrations according to the method of Zhang and Saito. [13],[14]

Drugs

Citalopram was obtained from Fako-Actavis Company (Istanbul, Turkey) and was prepared in distilled water (80 mg/mL). Urethane, α-chloralose, DPCPX, CSC, adenosine, dilazep dihydrochloride, indomethacin, EHNA, NBTI, EDTA, G- EDTA, trichloroacetic acid, potassium hydroxide, zinc sulfate, and barium hydroxide were obtained from Sigma Chemical (St. Louis, MO, USA). DMSO and chloroacetaldehyde were obtained from Aldrich Chemical. Urethane and α-chloralose were prepared as 300 mg/mL and 40 mg/mL stock solutions in distilled water, respectively. Sodium cromoglycate was prepared at a concentration of 12 mg/mL in distilled water. DPCPX was prepared as 4 mg/mL stock solution in DMSO. CSC was prepared as 6 mg/mL stock solution in DMSO. EHNA was prepared at a concentration of 10 mg/mL in DMSO. NBTI was prepared as 1 mg/mL stock solution in DMSO.

Statistical Analysis

Statistical analysis was carried out by calculating the percentage change in cardiovascular parameters. Statistical analysis of data within groups was evaluated by repeated measures of analysis of variance (ANOVA) followed by Tukey's multiple comparison tests. To analyze the differences among groups, ANOVA and Tukey's multiple comparison tests were performed. Duration of survival was compared using survival analysis based on the Kaplan-Meier procedure (GraphPad Instat™, 1990 − 1994, GraphPad Software V2.05a 9342, USA). P values of < 0.05 were considered to be statistically significant.


 » Results Top


Protocol 1: The Adenosine Receptors in Citalopram-induced Cardiovascular Toxicity

Citalopram infusion followed by the dextrose infusion caused a significant decrease in MAP and HR (P < 0.001 and P < 0.01). Citalopram prolonged QT interval and QRS duration after 30 th minute (P < 0.01 and P < 0.05).Citalopram infusion followed by the DPCPX infusion caused a significant decrease in MAP and HR (P < 0.001 and P < 0.01). Citalopram infusion prolonged QRS duration at 60 th minute significantly (P < 0.05). There was no significant change in the QT interval.

Citalopram infusion followed by the CSC infusion caused a significant decrease in the MAP and HR after 20 th minute (P < 0.001 and P < 0.01). Citalopram prolonged QT interval and QRS duration (P < 0.05 and P < 0.01). Citalopram infusion followed by DMSO infusion caused a significant decrease in the MAP and HR, (P < 0.05 and P < 0.00l). Citalopram prolonged QRS duration after 10 th minute significantly (P < 0.05). There was a prolongation in the QT interval after 20 th minute but this prolongation was not significant [Table 3].
Table 3: The effects of citalopram on cardiovascular parameters following administration of adenosine receptor antagonists

Click here to view


There was no statistically significant difference between MAP and HR reduction among the groups (P > 0.05), [Figure 1]a and b. DPCPX infusion prevented the prolongation of QT interval induced by citalopram when compared to control group significantly (P < 0.05 at 20 th min and 30 th min; P < 0.01 at 40 th min, 50 th min and 60 th min) [Figure 1]c. DPCPX or CSC infusions did not prevent QRS prolongation induced by citalopram at any time, significantly. DPCPX infusion prevented QRS prolongation when compared to DMSO group, significantly (P < 0.05) [Figure 1]d.
Figure 1: The effects of citalopram on cardiovascular parameters after the pretreatments with dextrose, DPCPX, CSC, and DMSO infusions. (c) †, P < 0.05; DPCPX versus control group, ††, P < 0.01; DPCPX versus control group, (d) †, P < 0.05; DPCPX versus DMSO group. (ANOVA and Tukey's multiple comparison tests were performed.). End of the infusion = End of the pretreatment of DPCPX, CSC and DMSO, MAP = Mean arterial pressure, HR = Heart rate, DPCPX = 8-Cyclopentyl-1,3-Dipropylxanthine, CSC = 8-(3-chlorostyryl) caffeine, DMSO = dimethyl sulfoxide, Cit = Citalopram

Click here to view


Survival rate was 100% (7/7) for all groups. There was not any significant difference for survival times among groups (P > 0.05).

Protocol 2: The Endogenous Adenosine in Citalopram-induced Cardiovascular Toxicity

Plasma adenosine concentrations


In the control group, citalopram infusion did not change plasma adenosine concentrations significantly (P > 0.05). In the other two groups, plasma adenosine concentrations increased (P < 0.01, P < 0.05 at group 2 and 3, respectively). When compared with the control group, a significant increase in the groups pretreated with EHNA/NBTI was observed (P < 0.05, P < 0.05 at group 2 and 3, respectively) [Table 4].
Table 4: Baseline and end-experiment plasma adenosine levels for protocol 2

Click here to view


Cardiovascular parameters

Citalopram infusion followed by dextrose injection caused a significant decrease in MAP and HR (P < 0.001 and P < 0.001). Citalopram prolonged QT interval and QRS duration (P < 0.001 and P < 0.001). Dextrose infusion followed by EHNA and NBTI injections caused a significant decrease in MAP and HR (P < 0.01 and P < 0.05). Dextrose infusion followed by EHNA and NBTI injections prolonged QRS duration at 50 th minute (P < 0.05). There was no significant change in QT interval. Citalopram infusion followed by EHNA and NBTI injections caused a significant decrease in MAP and HR (P < 0.001 and P < 0.001). Citalopram infusion prolonged QT interval and QRS duration (P < 0.001 and P < 0.001) [Table 5].
Table 5: The changes in cardiovascular parameters of the comparator groups for protocol 2

Click here to view


The comparison of group 1 and group 3

Decrease in MAP in EHNA/NBTI pretreated and citalopram infused rats was significantly higher than that of dextrose and citalopram infused rats at 10 th minute (P < 0.05) [Figure 2]a. When we compared two groups for decrease in HR, citalopram followed by EHNA/NBTI-induced decrease in HR was significantly higher than that of citalopram followed by dextrose infusion-induced decrease at 40 th minute (P < 0.01) [Figure 2]b. There was no statistically significant difference in QT and QRS prolongations between two groups (P > 0.05) [Figure 2]c and d.
Figure 2: The effects of the groups on the cardiovascular parameters. Control group (citalopram infusion), Group 2 (EHNA/NBTI administration), Group 3 (citalopram infusion following EHNA/NBTI administration) (a) *P < 0.05; group 3 versus control group, †, P < 0.05, ††, P < 0.01; group 3 versus group 2, (b) **P < 0.01; group 3 versus control group, ††, P < 0.01; group 3 versus group 2, †††, P < 0.001; group 3 versus group 2, (c) †, P < 0.05; group 3 versus group 2, ††, P < 0.01; group 3 versus group 2, (d) †, P < 0.05; group 3 versus group 2. (ANOVA and Tukey's multiple comparison tests were performed.) MAP = Mean arterial pressure, HR = Heart rate, EHNA = Erythro-9-(2-hydroxy-3-nonyl) adenine, NBTI = S-(4-nitrobenzyl)-6-thioinosine

Click here to view


The comparison of group 2 and group 3

Decrease in the MAP in EHNA/NBTI pretreated and citalopram infused rats was significantly greater than that of EHNA/NBTI pretreated and dextrose infused rats at 10 th , 20 th , and 30 th minutes (P < 0.05, P < 0.05 and P < 0.01, respectively) [Figure 2]a.

Citalopram followed by EHNA/NBTI-induced decrease in HR was significantly higher than that of dextrose followed by EHNA/NBTI infusion-induced decrease after 20 th minute (P < 0.001, P < 0.01, P < 0.001 and P < 0.001, respectively) [Figure 2]b.

Prolongation in QT interval in EHNA/NBTI pretreated and citalopram infused rats was greater than that of EHNA/NBTI pretreated and dextrose infused rats at 10 th and 20 th minutes (P < 0.01 and P < 0.05, respectively) [Figure 2]c.

Prolongation in QRS interval in EHNA/NBTI pretreated and citalopram-infused rats was statistically more significant than that of EHNA/NBTI pretreated and dextrose-infused rats after 20 th minute (P < 0.05) [Figure 2]d.

Survival Analysis

The survival rates for 60 minutes were 50% (4/8) for group 1, 100% (8/8) for group 2, and 62.5% (5/8) for group 3. While four rats died at 25 th , 49 th , 50 th , and 52 th minutes in the control group, three rats died at 31 th , 31 th , and 34 th minutes in group 3. There was no significant difference in survival rates (P > 0.05) [Figure 3].
Figure 3: Comparison of survival times among the groups. (Kaplan- Meier analysis was used.). EHNA = Erythro-9-(2-hydroxy-3-nonyl) adenine, NBTI = S-(4-nitrobenzyl)-6-thioinosine

Click here to view



 » Discussion Top


Our study consisted of two parts in which we investigated the role of adenosine receptors and endogenous adenosine in citalopram-induced cardiovascular toxicity.

In the first part of our study, citalopram infusion led to a significant reduction in mean arterial pressure (MAP) and heart rate (HR), and significantly prolonged QRS duration and the QT interval. Administration of DPCPX prior to citalopram infusion prevented only the prolongation of the QT interval as compared with the control group. However, administration of CSC prior to citalopram infusion did not ameliorate citalopram-induced deterioration of cardiovascular parameters. No statistically significant difference in survival rates was found among the groups.

The citalopram-induced cardiotoxic effects observed in our rat model are compatible with clinical evidence in the literature. Although exposure to high doses of selective serotonin reuptake inhibitors (SSRIs) is known to be safer than that of tricyclic antidepressants (TCAs), high-dose exposure to citalopram is not safe and can lead to critical cardiotoxic effects such as hypotension, tachycardia, bradycardia, bundle-branch block, and ECG abnormalities. [3],[15],[16],[17] In a retrospective study that compared the cardiotoxic effects of SSRIs, citalopram was determined to prolong the QT and QTc intervals more significantly than fluoxetine, fluvoxamine, paroxetine, and sertraline. [2]

Adenosine causes negative chronotropic, dromotropic, and inotropic effects, as well as cardiac depression via A 1 receptors. Adenosine produces its known effects through cyclic adenosine monophosphate (cAMP)-dependent (indirect or antiadrenergic effect) and cAMP-independent pathways via A 1 receptors. In the cAMP-dependent pathway, adenosine antagonizes electrophysiological and biochemical effects of β-adrenergic agonists. In cases where a β

adrenergic agonist is not present, adenosine does not affect the ventricular action potential or calcium flow. In the cAMP-independent (direct) pathway, stimulation of A 1 receptors causes K + loss by G i protein-gated inwardly rectifying K + channels. This causes shortening of the action potential of atrial cells, hyperpolarization of sinoatrial (SA) node cells, and depression of the action potential of atrioventricular nodal cells. [18]

In our study, blocking adenosine receptors by the selective adenosine A 1 and A 2a antagonists DPCPX and CSC did not prevent citalopram-induced reductions in MAP and HR. In an isolated guinea pig atrium study, negative inotropic and chronotropic effects caused by citalopram could not be prevented by an adenosine A 2 receptor antagonist (3,7 dimethyl-1- dipropargylxanthine, DMPX); however, these effects were significantly blocked by a selective adenosine A 1 receptor antagonist (DPCPX) and a non-selective adenosine A 1 /A 2 receptor antagonist (theophylline). [11] Negative inotropic and chronotropic effects of citalopram were explained by adenosine re-uptake inhibition or by activation of A 1 receptors. Conversely, a clear conclusion could not be reached. Further studies are needed to investigate whether adenosine receptor antagonists can prevent citalopram-induced reductions in MAP and HR.

The observed inhibition of citalopram-induced QT prolongation by an A 1 receptor antagonist (DPCPX) suggests that endogenous adenosine and/or stimulation of adenosine A 1 receptors plays a role in the mechanism underlying QT interval prolongation. Adenosine has minimal and/or non-existent effects on ventricular myocardial cells in the absence of catecholamines. This effect is associated with the absence of potassium acetylcholine channels (K Ach ) in ventricular myocytes under basal conditions. [19] If an adenosine-mediated mechanism plays a role in citalopram toxicity, this information will help us ignore the impact of a cAMP-independent (direct) pathway in the mechanism of QT interval prolongation. QT prolongation is related to the ventricular action potential. Thus, prolongation of the ventricular action potential leads to prolongation of the QT interval. Theoretically, prolongation of the action potential is possible through either an increase of inward depolarizing currents or a reduction of outward repolarization currents carried by potassium ions. [20] Adenosine shows antiadrenergic activities over delayed rectifier potassium currents (I K ). Action potential prolongation occurs through the inhibition of catecholamine-related I K currents. [21]

In a study performed by Witchel et al., in isolated guinea pig cardiomyocytes, citalopram was shown to inhibit human ether-à-go-go related gene (hERG)-related K + channel currents. [22] hERG ion channel is responsible for the repolarizing rapid delayed rectifier potassium current (I Kr ) and electrical conduction in the myometrium. Inhibition of this channel results in prolongation of both the QT interval and ventricular action potential. [23] Based on the results of some studies, both citalopram and adenosine utilize I K currents while generating their effects. Considering these data, adenosine-mediated rapid delayed rectifier K + current (I Kr ) inhibition most likely plays a role in citalopram-induced QT prolongation. Further studies are needed to investigate the role of potassium channels in adenosine-mediated mechanism on citalopram toxicity.

Based on the results of this part of our study, it is difficult to assert whether the increase in endogenous adenosine or direct adenosine receptor stimulation plays a role in the cardiotoxic effects induced by citalopram.

In the second part of our study, we evaluated the role of endogenous adenosine in the cardiotoxic effects of citalopram poisoning. We found no significant difference in rat plasma adenosine concentrations with high-dose citalopram infusion. A significant increase in plasma adenosine concentrations was observed in groups pre-treated with ENHA/NBTI. In the control group, citalopram infusion caused a significant prolongation of QRS duration and the QT interval, and a significant reduction in MAP and HR. In addition to an increase in plasma adenosine concentrations after ENHA/NBTI administration, a significant decrease was observed in MAP and HR. Further, QRS duration was significantly prolonged in the 50 th minute. These alterations can be explained by the known cardiovascular effects of adenosine through stimulation of its receptors. [5],[18] Citalopram, administered after ENHA/NBTI infusion, potentiated the effects on MAP, HR, QRS duration, and the QT interval of the group that was only administered ENHA/NBTI. No statistically significant difference in survival rates was found among the groups.

In our study, high-dose citalopram infusion caused a reduction in MAP and HR, and also prolonged QRS duration and QT intervals without increasing plasma adenosine concentrations. Citalopram can increase susceptibility to endogenous adenosine without changing plasma adenosine levels.

Our results show that citalopram may lead to QT prolongation by stimulating adenosine A 1 receptors without affecting the release of adenosine. Further studies are needed to clarify the role of potassium channels via adenosine A 1 receptors stimulation on mechanism of citalopram induced-QT prolongation.


 » Acknowledgment Top


This study was supported by a grant from The Scientific and Technological Research Council of Turkey (TUBITAK, Project Number: 107S251). Plasma adenosine levels were measured at Dokuz Eylul University Medical School Training Resources Center Research Laboratory. We thank Memduh Bulbul (MD, PhD) for his support to serum adenosine level measurements.

The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/UEQEEx

 
 » References Top

1.Ekselius L, von Knorring L, Eberhard G. A double-blind multicenter trial comparing sertraline and citalopram in patients with major depression treated in general practice. Int Clin Psychopharmacol 1997;12:323-31.  Back to cited text no. 1
    
2.Isbister GK, Bowe SJ, Dawson A, Whyte IM. Relative toxicity of selective serotonin reuptake inhibitors (SSRIs) in overdose. J Toxicol Clin Toxicol 2004;42:277-85.  Back to cited text no. 2
    
3.Tarabar AF, Hoffman RS, Nelson L. Citalopram overdose: Late presentation if torsdae de pointes with cardiac arrest. J Med Toxicol 2008;4:101-5.  Back to cited text no. 3
    
4.Yan L, Burbiel JC, Maass A, Müller CE. Adenosine receptor agonists: From basic medicinal chemistry to clinical development. Expert Opin Emerg Drugs 2003;8:537-76.  Back to cited text no. 4
    
5.Olsson RA, Pearson JD. Cardiovascular purinoceptors. Physiol Rev 1990;70:761-845.  Back to cited text no. 5
    
6.Kalkan S, Aygoren O, Akgun A, Gidener S, Guven H, Tuncok Y. Do adenosine receptors play a role in amitriptyline-induced cardiovascular toxicity in rats. J Toxicol Clin Toxicol 2004;42:945-54.  Back to cited text no. 6
    
7.Akgun A, Kalkan S, Hocaoglu N, Gidener S, Tuncok Y. Effects of adenosine receptor antagonists on amitriptyline-induced QRS prolongation in isolated rat hearts. Clin Toxicol (Phila) 2008;46:677-85.  Back to cited text no. 7
    
8.Akgun Arici MA, Kalkan S, Demir O, Hocaoglu Aksay N, Gidener S, Tuncok Y. Does adenosine A1 receptor stimulation causes QRS prolongation by blocking beta adrenergic receptors in amitriptyline poisoning? Toxicol Lett 2009;186:130-8.  Back to cited text no. 8
    
9.Kalkan S, Hocaoglu N, Oransay K, Buyukdeligoz M, Tuncok Y. Adenosine-mediated cardiovascular toxicity in amitriptyline-poisoned rats. Drug Chem Toxicol 2012;35:423-31.  Back to cited text no. 9
    
10.Kalkan S, Oransay K, Bal I, Ertunc M, Sara Y, Iskit A. The role of adenosine receptors on amitriptyline-induced electrophysiological changes on rat atrium. Hum Exp Toxicol 2013;32:62-9.  Back to cited text no. 10
    
11.Pousti A, Deemyad T, Malihi G. Mechanism of inhibitory effect of citalopram on isolated guinea-pig atria in relation to adenosine receptor. Hum Psychopharmacol 2004;19:347-50.  Back to cited text no. 11
    
12.Ellis KM, Mazzoni L, Fozard JR. Role of endogenous adenosine in the acute and late response to allergen challenge in actively sensitized Brown Norway rats. Br J Pharmacol 2003;139:1212-8.  Back to cited text no. 12
    
13.Zhang Y, Geiger JD, Lautt WW. Improved high-pressure liquid chromatographic-fluorometric assay for measurement of adenosine in plasma. Am J Physiol 1991;260:G658-64.  Back to cited text no. 13
    
14.Saito H, Nishimura M, Shinano H, Makita H, Tsujino I, Shibuya E, et al. Plasma concentration of adenosine during normoxia and moderate hypoxia in humans. Am J Respir Crit Care Med 1999;159:1014-8.  Back to cited text no. 14
    
15.Catalano G, Catalano MC, Epstein MA, Tsambiras PE. QTc interval prolongation associated with citalopram overdose: A case report and literature review. Clin Neuropharmacol 2001;24:158-62.  Back to cited text no. 15
    
16.Jimmink A, Caminada K, Hunfeld NG, Touw DJ. Clinical toxicology of citalopram after acute intoxication with the sole drug or in combination with other drugs, overview of 26 cases. Ther Drug Monit 2008;30:365-71.  Back to cited text no. 16
    
17.Liotier J, Coudoré F. Drug monitoring of a case of citalopram overdosage. Drug Chem Toxicol 2011;34:420-3.  Back to cited text no. 17
    
18.Lerman BB, Belardinelli L. Cardiac electrophysiology of adenosine. Basic and clinical concepts. Circulation 1991;83:1499-509.  Back to cited text no. 18
    
19.Shen WK, Kurachi Y. Mechanisms of adenosine-mediated actions on cellular and clinical cardiac electrophysiology. Mayo Clin Proc 1995;70:274-91.  Back to cited text no. 19
    
20.Witchel HJ, Hancox JC. Familial and acquired long qt syndrome and the cardiac rapid delayed rectifier potassium current. Clin Exp Pharmacol Physiol 2000;27:753-66.  Back to cited text no. 20
    
21.Belardinelli L, Shryock JC, Song Y, Wang D, Srinivas M. Ionic basis of the electrophysiological actions of adenosine on cardiomyocytes. FASEB J 1995;9:359-65.  Back to cited text no. 21
    
22.Witchel HJ, Pabbathi VK, Hofmann G, Paul AA, Hancox JC. Inhibitory actions of the selective serotonin re-uptake inhibitor citalopram on HERG and ventricular L-type calcium currents. FEBS Lett 2002;512:59-66.  Back to cited text no. 22
    
23.Gintant G. An evaluation of hERG current assay performance: Translating preclinical safety studies to clinical QT prolongation. Pharmacol Ther 2011;129:109-19.  Back to cited text no. 23
[PUBMED]    


    Figures

  [Figure 1], [Figure 2], [Figure 3]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5]

This article has been cited by
1 Hydroxychloroquine and “off-label” utilization in the treatment of oral conditions
Ronald Brown
Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2020; 129(6): 643
[Pubmed] | [DOI]



 

Top
Print this article  Email this article
 

    

Site Map | Home | Contact Us | Feedback | Copyright and Disclaimer
Online since 20th July '04
Published by Wolters Kluwer - Medknow