IPSIndian Journal of Pharmacology
Home  IPS  Feedback Subscribe Top cited articles Login 
Users Online : 2189 
Small font sizeDefault font sizeIncrease font size
Navigate Here
 »   Next article
 »   Previous article
 »   Table of Contents

Resource Links
 »   Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »Related articles
 »   Citation Manager
 »   Access Statistics
 »   Reader Comments
 »   Email Alert *
 »   Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3924    
    Printed132    
    Emailed0    
    PDF Downloaded203    
    Comments [Add]    
    Cited by others 1    

Recommend this journal

 

 RESEARCH ARTICLE
Year : 2014  |  Volume : 46  |  Issue : 4  |  Page : 378-385

The role of adenosine receptors and endogenous adenosine in citalopram-induced cardiovascular toxicity


Department of Pharmacology, Dokuz Eylul University, School of Medicine, Inciralti, Izmir, Turkey

Correspondence Address:
Sule Kalkan
Department of Pharmacology, Dokuz Eylul University, School of Medicine, Inciralti, Izmir
Turkey
Login to access the Email id

Source of Support: The Scientifi c and Technological Research Council of Turkey., Conflict of Interest: None


DOI: 10.4103/0253-7613.135948

Rights and Permissions

Aim: We investigated the role of adenosine in citalopram-induced cardiotoxicity. Materials and Methods: Protocol 1: Rats were randomized into four groups. Sodium cromoglycate was administered to rats. Citalopram was infused after the 5% dextrose, 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX; A 1 receptor antagonist), 8-(-3-chlorostyryl)-caffeine (CSC; A 2a receptor antagonist), or dimethyl sulfoxide (DMSO) administrations. Protocol 2: First group received 5% dextrose intraperitoneally 1 hour prior to citalopram. Other rats were pretreated with erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA; inhibitor of adenosine deaminase) and S-(4-Nitrobenzyl)-6-thioinosine (NBTI; inhibitor of facilitated adenosine transport). After pretreatment, group 2 received 5% dextrose and group 3 received citalopram. Adenosine concentrations, mean arterial pressure (MAP), heart rate (HR),  QRS duration and QT interval were evaluated. Results: In the dextrose group, citalopram infusion caused a significant decrease in MAP and HR and caused a significant prolongation in QRS and QT. DPCPX infusion significantly prevented the prolongation of the QT interval when compared to control. In the second protocol, citalopram infusion did not cause a significant change in plasma adenosine concentrations, but a significant increase observed in EHNA/NBTI groups. In EHNA/NBTI groups, citalopram-induced MAP and HR reductions, QRS and QT prolongations were more significant than the dextrose group. Conclusions: Citalopram may lead to QT prolongation by stimulating adenosine A 1 receptors without affecting the release of adenosine.






[FULL TEXT] [PDF]*


        
Print this article     Email this article

Site Map | Home | Contact Us | Feedback | Copyright and Disclaimer | Privacy Notice
Online since 20th July '04
Published by Wolters Kluwer - Medknow