IPSIndian Journal of Pharmacology
Home  IPS  Feedback Subscribe Top cited articles Login 
Users Online : 6474 
Small font sizeDefault font sizeIncrease font size
Navigate Here
 »   Next article
 »   Previous article
 »   Table of Contents

Resource Links
 »   Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »Related articles
 »   Citation Manager
 »   Access Statistics
 »   Reader Comments
 »   Email Alert *
 »   Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded292    
    Comments [Add]    
    Cited by others 2    

Recommend this journal


Year : 2013  |  Volume : 45  |  Issue : 6  |  Page : 556-562

The effect of chinese medicine pu-ren-dan on pancreatic angiogenesis in high fat diet/streptozotocin-induced diabetic rats

Institute of Chinese Minority Traditional Medicine, Minzu University of China, Beijing 100081, China

Correspondence Address:
Zongran Pang
Institute of Chinese Minority Traditional Medicine, Minzu University of China, Beijing 100081
Login to access the Email id

Source of Support: This work was partly supported by Beijing Natural Science Foundation (NO. 7122091) and Independent Research Project of Minzu University of China (NO. 112KYXJ09), and also supported in part by Academic Scholarship for Doctoral Candidates of Ministry of Education., Conflict of Interest: None

DOI: 10.4103/0253-7613.121364

Rights and Permissions

Objectives: The islet vascular system is critical for β-cell function. This study investigated the antidiabetic effect of the Chinese Pu-Ren-Dan (PRD) recipe by regulating the pancreatic angiogenic factors in T2DM rats. Materials Methods: High fat diet/streptozotocin-induced obese type-2 diabetes mellitus rats were developed and treated with PRD for 4 weeks. Then glucolipid metabolism, insulin secretion, pancreatic blood flow, ultrastructure of islet β-cell, histological changes of islet and protein expressions of pancreatic angiogenic factors were investigated. Results: PRD-reduced T2DM rats' body weight and blood glucose level resisted the lipid metabolism disturbance, and ameliorated the insulin resistance and β-cell function. In addition, the histological and morphological studies proved that PRD could maintain the normal distribution of endocrine cell in islet and normal ultrastructure of β cell. An increased pancreatic blood flow was observed after the PRD treatment. In the investigation of pancreatic angiogenic factors, PRD inhibited the decreased expression of VEGF and Ang-1, and reversed the reduction of VEGFR2 and Tie2 phosphorylation in T2DM rats; the Ang-2 and TGFβ expression were up-regulated by PRD while PKC was activated; endostatin and angiostatin were down-regulated by PRD. Conclusions: The results suggest that increasing VEGF expression, regulating VEGF/VEGFR2 signaling, stimulating Ang-1/Tie-2 signaling pathway, and inhibiting PKC-TGFβ signaling and antiangiogenic factors might be the underlying mechanism of PRD's antidiabetic effect.


Print this article     Email this article

Site Map | Home | Contact Us | Feedback | Copyright and Disclaimer | Privacy Notice
Online since 20th July '04
Published by Wolters Kluwer - Medknow