IPSIndian Journal of Pharmacology
Home  IPS  Feedback Subscribe Top cited articles Login 
Users Online : 604 
Small font sizeDefault font sizeIncrease font size
Navigate Here
 »   Next article
 »   Previous article
 »   Table of Contents

Resource Links
 »   Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »Related articles
 »   Citation Manager
 »   Access Statistics
 »   Reader Comments
 »   Email Alert *
 »   Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3754    
    Printed62    
    Emailed1    
    PDF Downloaded130    
    Comments [Add]    

Recommend this journal

 

 RESEARCH ARTICLE
Year : 2013  |  Volume : 45  |  Issue : 4  |  Page : 339-343

Effect of thiamine pyrophosphate on ischemia-reperfusion induced oxidative damage in rat kidney


1 Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
2 Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
3 Department of Biochemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
4 Department of Anesthesia, Nene Hatun Obstetrics and Gynecology Hospital, Erzurum, Turkey
5 Department of General Surgery, Ibni Sina Hospital, Kayseri, Turkey

Correspondence Address:
Halis Suleyman
Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize
Turkey
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0253-7613.115005

Rights and Permissions

Objectives: The biochemical effects of thiamine pyrophosphate on ischemia-reperfusion (IR) induced oxidative damage and DNA mutation in rat kidney tissue were investigated, and compared to thiamine. Materials and Methods: Rats were divided into four groups: Renal ischemia-reperfusion (RIR); thiamine pyrophosphate + RIR (TPRIR); thiamine + RIR (TRIR); and sham group (SG). Results: The results of biochemical experiments have shown that malondialdehyde (MDA) levels in rat kidney tissue after TRIR and TPRIR treatment were 7.2 ± 0.5 (P > 0.05) and 3.3 ± 0.3 (P < 0.0001) μmol/g protein, respectively. The MDA levels in the SG rat kidney tissue and in RIR group were 3.6 ± 0.2 (P < 0.0001) and 7.6 ± 0.6 μmol/g protein, respectively. Total glutathione (tGSH) levels in TRIR, TPRIR, SG, and RIR animal groups were 2.2 ± 0.3 (P > 0.05), 5.8 ± 0.4 (P < 0.0001), 6.2 ± 0.2 (P < 0.0001), and 1.7 ± 0.2 nmol/g protein, respectively. In the TRIR, TPRIR, SG, and RIR animal groups; 8-hydroxyguanine (8-OHGua)/Gua levels, which indicate mutagenic DNA, were 1.75 ± 0.12 (P > 0.05), 0.93 ± 0.1 (P < 0.0001), 0.85 ± 0.08 (P < 0.0001), and 1.93 ± 0.24 pmol/L, respectively. Conclusions: It has been shown that thiamine pyrophosphate prevents increase in mutagenic DNA in IR induced oxidative damage, whereas thiamine does not have this effect.






[FULL TEXT] [PDF]*


        
Print this article     Email this article

Site Map | Home | Contact Us | Feedback | Copyright and Disclaimer
Online since 20th July '04
Published by Wolters Kluwer - Medknow