IPSIndian Journal of Pharmacology
Home  IPS  Feedback Subscribe Top cited articles Login 
Users Online : 1766 
Small font sizeDefault font sizeIncrease font size
Navigate Here
 »   Next article
 »   Previous article
 »   Table of Contents

Resource Links
 »   Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »Related articles
 »   Citation Manager
 »   Access Statistics
 »   Reader Comments
 »   Email Alert *
 »   Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded278    
    Comments [Add]    

Recommend this journal


Year : 2009  |  Volume : 41  |  Issue : 5  |  Page : 213-217

The effects of pentoxifylline on skeletal muscle contractility and neuromuscular transmission during hypoxia

1 Department of Physiology, Faculty of Medicine, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
2 Department of Pharmacology, Faculty of Medicine, Hacettepe University, 06100 Sihhiye, Ankara, Turkey

Correspondence Address:
Fatma Simsek-Duran
Department of Physiology, Faculty of Medicine, Hacettepe University, 06100 Sihhiye, Ankara
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0253-7613.58509

Rights and Permissions

Objectives : The objective of this study was to investigate the effects of pentoxifylline (PTX), a drug that is mainly used for indications related to tissue hypoxia, on hypoxia-induced inhibition of skeletal muscle contractility and neuromuscular transmission in mice. We hypothesized that chronic PTX treatment alters skeletal muscle contractility and hypoxia-induced dysfunction. Materials and Methods : Mice were treated with 50 mg/kg PTX or saline intraperitoneally for a week. Following ether anesthesia, diaphragm muscles were removed; isometric muscle contractions and action potentials were recorded. Time to reach neuromuscular blockade and the rate of recovery of muscle contractility were assessed during hypoxia and re-oxygenation. Results : The PTX group displayed 90% greater twitch amplitudes (P < 0.01). Hypoxia depressed twitch contractions and caused neuromuscular blockade in both groups. However, neuromuscular blockade occurred earlier in PTX-treated animals (P < 0.05). Muscle contractures developed during hypoxia were more pronounced in the PTX group (P < 0.05). Re-oxygenation reduced contracture and indirect muscle contractions resumed. The rate of recovery of contractions was faster (P < 0.05) and the amplitude of contractions was greater (P < 0.01) in the PTX group. PTX treatment increased amplitude (P < 0.05) and shortened action potential (P < 0.05) without altering resting membrane potential, excitation threshold, and neurotransmitter release. Conclusion : Chronic PTX treatment increases diaphragm contractility, but amplifies hypoxia-induced contractile dysfunction in mice. These results may implicate important clinical consequences for clinical usage of PTX in hypoxia-related conditions.


Print this article     Email this article

Site Map | Home | Contact Us | Feedback | Copyright and Disclaimer | Privacy Notice
Online since 20th July '04
Published by Wolters Kluwer - Medknow