IPSIndian Journal of Pharmacology
Home  IPS  Feedback Subscribe Top cited articles Login 
Users Online : 200 
Small font sizeDefault font sizeIncrease font size
Navigate Here
 »   Next article
 »   Previous article
 »   Table of Contents

Resource Links
 »   Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »Related articles
 »   Citation Manager
 »   Access Statistics
 »   Reader Comments
 »   Email Alert *
 »   Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded405    
    Comments [Add]    
    Cited by others 2    

Recommend this journal


Year : 2009  |  Volume : 41  |  Issue : 4  |  Page : 162-166

Therapeutic class-specific signal detection of bradycardia associated with propranolol hydrochloride

1 Department of Pharmacology, SPTM Shirpur Campus SVKM's NMIMS University, Mumbai, India
2 Department of Clinical Research and Pharmacology, Cadila Pharmaceuticals Ltd, Ahmedabad, Gujarat, India

Correspondence Address:
Bhaswat S Chakraborty
Department of Clinical Research and Pharmacology, Cadila Pharmaceuticals Ltd, Ahmedabad, Gujarat
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0253-7613.56068

Rights and Permissions

Background: Propranolol hydrochloride, one of the most widely used β-blocker in the treatment of hypertension since 1960s, shows a number of serious and non-serious adverse events. Objective: Major objectives of this study were to extract the Canadian Adverse Drug Reaction Monitoring Program (CADRMP) database for possible toxic signal detection (SD) of propranolol hydrochloride, evaluate the frequency of the bradycardia associated with it in different stratified groups for a putative signal, and generate awareness in healthcare professionals regarding usefulness of SD. Materials and Methods: Appropriate statistical methods were used for adverse drug reaction (ADR) signal detection such as, proportional reporting ratio (PRR); reporting odds ratio (ROR); the Chi-square (λ2 ) statistic method; the 95% confidence interval (CI); the observed to expected ratio (O/E); and Du Mouchel method were used to calculate the possible signals. Significance of λ2 and other calculated statistics, e.g., PRR and ROR, was based on a composite criterion of regulatory guidelines and not on any particular statistical level of significance. Results: Calculated statistics by different methods were compared with the regulatory criteria of a statistic value ≥4.0 for λ2 , and ≥3.0 for the rest for SD to be declared significant. The PRR statistic was found to be 2.5054; by the ROR method it was 2.5820; the λ2 statistic was 3.2598, whereas the lower and upper limits of 95% CI of PRR were found to be 0.0778 and 1.9104, respectively, by the O/E ratio was found to be 2.3978, and PRR with the help of Du Mouchel was found to be 2.3979. Thus, the bradycardia-propranolol signals calculated in this study were not significant. Conclusions: The therapeutic class specific signal of bradycardia associated with propranolol hydrochloride was not found potent enough to cause bradycardia. However, since the calculated statistics were very high albeit not significant, the possibility of bradycardia-propranolol pairing should still be analyzed from larger databases.


Print this article     Email this article

Site Map | Home | Contact Us | Feedback | Copyright and Disclaimer | Privacy Notice
Online since 20th July '04
Published by Wolters Kluwer - Medknow