RESEARCH ARTICLE |
|
Year : 2009 | Volume
: 41
| Issue : 3 | Page : 115-119 |
Brahma Rasayana enhances in vivo antioxidant status in cold-stressed chickens (Gallus gallus domesticus)
V Ramnath, PS Rekha
Dept. of Veterinary Physiology, College of Veterinary and Animal Sciences, Kerala Agricultural University, Mannuthy, Thrissur-680 651, Kerala, India
Correspondence Address:
V Ramnath Dept. of Veterinary Physiology, College of Veterinary and Animal Sciences, Kerala Agricultural University, Mannuthy, Thrissur-680 651, Kerala India
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/0253-7613.55209
Objective: To evaluate the antioxidant status of chicken during cold stress and to investigate if there are any beneficial effects of Brahma Rasayana supplementation in cold stressed chicken.
Materials and Methods: Activities of enzymatic and levels of non-enzymatic antioxidants in blood / serum and liver tissue were evaluated in chicken exposed to cold (4 ± 10C and relative humidity of 40 ± 5%, for six consecutive hours daily, for 5 or 10 days). The antioxidant properties of Brahma Rasayana (BR) supplementation (2 g/kg daily, orally) during cold stress was also studied.
Results: There was a significant (P < 0.05) decrease in antioxidant enzyme in the blood, such as, superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione reductase (GR), and serum reduced glutathione (GSH) in cold stressed chicken. Serum and liver lipid peroxidation levels were significantly (P < 0.05) higher in cold stressed untreated chickens when compared to the treated and unstressed groups. There was also a significant (P < 0.05) increase in the antioxidant enzymes in the blood, such as, catalase (CAT) and SOD, in the liver CAT and SOD, and in GPX and GR in BR-treated cold stressed chicken, when compared to the untreated controls.
Conclusions: Results of the present study conclude that in chicken, BR supplementation during cold stress brings about enhanced actions of the enzymatic and non-enzymatic antioxidants, which nullify the undesired side effects of free radicals generated during cold stress.
[FULL TEXT] [PDF]*
|